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TRAVELTNG GUSTS, WITH APPLICATION TO
PENETRATION OF WEAK BLAST WAVES
By Joseph A. Drischler and Franklin W. Diederich

SUMMARY

The 1i1ft and moment responses to penetration of sharp-edged
traveling gusts are calculated for wings in incompressible and supersonic
two-dimensional flow, for wide delte and rectanguler wings in supersonic
flow, and for very narrow delta wings. By usling the two-dimensionsl
indicial-11ft functions, some calculations of normal-scceleration response
are made for two mess ratlios.

The results of these calculatlons Indicate that the forward speed
of the gusts has a large effect on the 1lift- and moment-response func-
tions. For incompressible flow, pesks exlst 1n the early portion of the
1ift response, which mey be much larger than the steady-state value.
Some peeks also occur in the lift-response functions for supersonic
speeds but are much less pronounced and exceed the steady-state value in
only & few lnstances.

Calculations have also been made of the normsl-scceleration response
to sharp-edged traveling gusts and indicate that this response tends
to follow the 1ift respomse very closely in the firast few instents of
penetration; thus, the lerge peeks which exist in the 1ift response at
aubgonic speeds are duplicated in the acceleration response.

The relatlon between gusts traveling et supersonic speeds and blast
waves is indlcated, and the menner in which the calculated 1ift and
moment responses can be used in a linearized spproach to the blast-loed
problem is outlined. :

INTRODUCTION

The growth of the 1ift and moment on & wing entering a stationsry
shaerp-edged gust has been the subject of numerocus investigetlons since
it was first calculated for Ilncompressible two-3imensionel flow in
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references 1 and 2. However, very little work appears to have been done
on the subject of 1ift and moment response to traveling sherp-edged gusts,
the only published results being those presented for incompressible two-
dimensional flow in reference 3.

The reason for this shortage of information is probably due to the fact
that gusts (in the literal senmse) traveling at high gpeeds are not likely
to be encountered in practice. However, the lifts end moments due to
penetretion of traveling gusts can be used to calculste the loads and
motions of an airplane or missile dropped from another airplane, of an
eirplane crossing the wake of or flying past another airplane, of a __
helicopter blade traversing the weke produced by itself and the other
blades of the rotor (a problem which furnished the motivetion for ref. 3),
of an eirplane flying through a sonic "boom," and of an eirplane encoun-
tering or being overtaken by a blest wave.

In the first section of this paper the unsteady lift and moment
pursuant to penetration of a traveling sharp-edged gust are calcu-
lated by linear theory for incompressible two-dimensional flow (by a
method different from the one employed in ref. 3), for two-dimensional
supersonic flow, for deltea wings with supersonic leading edges, for
rectangular wings in supersonic flow, and for very nasrrow delta wings
in incompressible and compressible flow. The unsteady-lift functions
presented here may be considered to be generalized unsteady-lift functions
in the sense that they include as special cases the two previously calcu-
lated unsteady-1ift functions: namely, the gust-penetration (Kiissner)
function, which corresponds to zero gust speed, end the unsteady-1ift
function due to airplene motion (the Wagner function, first calculated

in ref. 4), which corresponds to infinite gust speed. .

By using the unsteady-11ft functions calculated for two-dimensionsl
incompressible and supersonic compressible flow, the normel-sccelerstion
response 1s calculated in the second section of this paper for sirplanes
with two dilfferent mass ratios and for various values of the speed of
gust propagation in order to indicate the effect of this speed on the
accelerations.

The relation between treveling gusts and blast weves 1s indicated
in the third section of this paper. The results presented herein for
supersonic speeds are thus pertinent to the penetration of blast waves,
elthough the results calculated by linear theory are useble only if the
blast waves are weak, and although for blasts the unsteady-lift functions
calculated in thle manner represent only the effects of the change in flow
direction induced at the wing. The effects of the finite pressure jump,
which are of first order, are not taken into account entirely and may
require separate treatment; and neither ere the effects of the discon-
tinuities in density and temperature taken into account. However, these
effects are of higher order and, hence, negligible for a weak blast wave.

g



_-b*-"

NACA TN 3956

General relstions between the 11ft or moment responses to sharp-
edged gusts (treveling or stetionary) and the responses to indicial flap
deflections sre given 1n the appendix. These relations have been used
to calculate the unsteady-11ft and unsteady-moment functions given herein
for incompressible two-dimenslionsl flow and to check the results obtained

for some other conditions.
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SYMBOLS

aspect ratio

speed of sound of undisturbed stream
local span

Theodorsen function

11ft coefficient

slope of 1lift curve

pitching~moment coefficient (steady-state value)

instantaneous velue of pitching-moment coefficlent
pressure coefflcient

chord, root chord in case of delte wing

gsection lift coefficlent

section slope of 1lift curve

section plichling-moment coefficlent

distance behind wave front
local effective sinking speed of wing
alleviation factor for sherp-edged gust

o
2V/e

reduced frequency,



k(s)

kg(s,t)
kl(s)

iy(s)

1x")
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unsteady-11ift functlon for penetration of traveling shaxrp-
edged gusts '

unsteady-1ift function for indicial flap deflection

unsteady-1ift functlon for 1ndiclael change of angle of attack

unsteady-1ift function for penetration of stationsry gust

11ft per unit length along chord __ _ - -

Mech mumber, V/a

equivalent Mach mumber, M + Mg
Mech number corresponding to gust propsgetion speed

slope of leading edge, b(x')/2x'

maess of airpleane

.differences in pressures on upper and lower wing surface at

a given point

overpressure in blast

dynamic pressure, % pV2

wing ares

distance traveled, semichords or root semichords (unless
specified otherwise)

trensformed time (distence traveled by sound weve), at!'
physical -time
forward velocity of wing

propagetion velocity of gust, positive when moving in
direction opposite to that of wing

‘vertical velocity of gust —

I,

Jil

i
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x trensformed ordinate corresponding to x', (= - V&)
x! ordinate along flight path, measured rearward from leading
edge or espex of wing
7 acceleration of airfoll due to traveling sharp-edged gust
8
25 statlc acceleration, . CIh’ L
mg V

%o angle of attack of wing prior to gust entry, radisns
B =\|1 -2
8(s) unit impulse function or Dirac delte function
A speed ratio, v

V+ Vg
1 mess retbtlo, ESFLG
p alr density
g perturbation velocity potential
w clrcular frequency
/(s) unit jump function
Subscripts:
b blast
t time

Dots indicete differentiation with respect to time.
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CAICULATION OF UNSTEADY-LIFT AND UNSTEADY-MOMENT FUNCTIONS =

FOR TRAVELING SHARP-EDGED GUSTS -

_J

The unsteady-1ift eand unsteedy-moment functions for indicial angle-
of-attack change and for penetration of a sharp-edged stationary gust
have been calculated for & large veriety of conditions. (See refs. 1
to 11, for instance.) This information is not sufficient in ltself to .
celculste the vnsteedy-1lift and unsteady-moment functions for traveling S
sharp-edged gusts. Therefore, in this section most of the functions are
calculated directly by solving the given boundary-value problem by use
of the techniques employed previously to solve the other problems.

TR

LRI Y

The desired functions cen be calculated if additionsl Informatlon C-
is avelleble for the indicial-response functions, such as the indiclal
responses to flap deflections. This approach is outlined in the sppendix N
and will be used in this section to calculate the deslred responses for h B
incompressible two-dimensional flow. T

The Boundery-Velue Problem ) ) =

The linearized partiael differential equetion for the veloelty )
potential of a wing traveling at a constant speed V 1in g compressible. .
inviscid medium 1s the wave equation and can be written in coordinates
fixed in the wing surface as

TS

(l - M'2)¢x|x| + ¢y:y| + ¢lel = 41—2(2V¢x|t: + ¢‘l':"t') (1)

o

and for the lifting case the pressure differénce Ap between the upper
end lower surface is glven in terms of the potential on the surface by

. ill. 1

L]

E - e+ 5) (2)

dition 1s that the downwash ¢z' be zero on the part of the wing which

has not yet been reached by the gust front, and be equal to W on that
part of the wing which has been passed over by the gust front; that 1s,

For the sharp-edged gust-penetration problem the primary boundary con- sz
on the wing surface, - =
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Bar =0 (x> (V+ V)t")

(3)
By =W (x' < (V+ vs)t')

Other boundary conditions are that the pressures on the plane of the
wing be zero (except on the wing) and that the pressure difference at
subsonic trailing edges be zero.

For supersonic flow the followlng coordinate transformstion often
facllitates the solution of the problem:

N
X =X' -« Vt!

y=v' % (k)

t = at!

7/

Under this transformation, equation (1) becomes the normslized wave
equetion 1n stetlonary coordinates

¢xx + ¢y‘y + ¢zz = ¢1,',t, (5)
equation (2) becomes
L
% = % . (6)

and equation (3) becomes, for the transformed wing surface,

Bz =0 (x> M)
By =W (x<Mg'b)

(Ta)

for gusts treversing the wing from the leading edge to the tralling edge.

Similerly,
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B, = 0 (x<c+Mgt)
o =W (x> c+ Myt

(7o)

for gusts overtaking the wing.

Definitions of Unsteady-Lift and Unsteady-Moment Functions

The section lift and moment coeffilcients can be cbtained by inte-
gration of the pressure distribution slong & chord, nemely,

-\

cz =I.l cgdx'
c 0 q
(8)

=ifch’d_x'
m= 3 J, )

On a wing of finite section the loading on a spenwise strip can be
obtained by integrsting over y, namely,

b(x')/2
Ux') & 5o
: f dy (9)

~b(x')/2 ¢

end, hence, the 1ift and moment coefficients can be obtained from

c
o = 5 ,/; Ux') g
? (10)

c
Cm=l 2x') 41 gy
Sc 0 q
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The unsteady-1ift functlons for penetration of treveling sherp-
edged gusts will be normalized to thelr steady-state values and, hence,
be defined for two-dlmenslonael flow as

cz(s)

°zm§

k(s) =

" and for three-dimensionsl flow as

Cr(s)
¥
CIh. v
where both c3(s) and Cp(s) pertain to verticel gusts of intensity W,

and s 1s the distance traveled in semichords (for two-dimensional and
rectanguler wings) or root semichords (for delta wings).

k(s) =

For the unsteady-moment functions no common designetion exists.
Therefore, unsteady-moment coefflcients wlll be presented directly for
unit W/V eand will not be normalized with respect to the steady-state
values.

When the gust propegetion speed is zero, the function k(s) reduces
to0 the commonly used gust-penetration functlion, which is usually desig-
nated by ko(s) and referred to as the Kiissner function. Thus,

k(s)|Vs==O = ky(s)

Similarly, when the gust propagation speed 1s infinite, the angle of
attack over the entlre wing 1s changed lnstantaneocusly; therefore, the
unsteady-1ift function becomes that for indicisl change of angle of
attack, which is usually designated by k;(s) and is referred to as the
Wegner function. Thus,

k(")|vs=m = I (s)

Between these extremes, when the gust propegation speed i1s positive, the
gust approaches the. wing; when 1t 1s negative but less in magnitude than



10 NACA TN 3956

the speed of the wing, the wing overtekes the gust. When the gust speed
is negative but greater in magnitude than that of the wing, the gust over-
tekes the wing; that 1s, it approaches the wing from the rear. All these
possibilities will be considered in this paper.

Incompressible Two-Dimensionsal Flow

For incompressible two-dimensional flow, equation (1) becomes the
two-dimensional IL&place equation, and its direct solution for the unsteady
boundery condition represented by equation (3) comstitutes a difficult
problem. This problem hes been solved in reference 3 by an indirect
approach, which consists 1n using the known results for the 1ift response
due to an infinite train of traveling sinusoldal gusts and in obtalning
the response for sharp-edged gusts by means of the well-known super-
position integral given in reference 5. However, in order to effect
this transformation, the results for sinusoidal gusts have to be expanded
in a serles; thus, the results for the sharp-edged traveling gust con-.
tain & certaln degree of approximation.

The same functlion haed been obtained by an altogether different
method 1n connection with the present peper before reference 3 became
avallable. This method is based on the approach outlined in the appendix
and conslsts in relating the 1ift or moment response to penetration of a
statlionary or traveling sharp-edged gust to indiclal 1ifts and moments
due to flap deflection by means of superposition integrals. Its appli-
cation to the case of incompressible two-dimensional flow is outlined
in the following paragrsphs. Although this_spproach also contains an
approximation, a comparison of its results with those of reference 3
should furnish an indication of the validity of the two approximstions.

Equations (Al) and (A2) of the appendix serve to express the desired

unsteady-1ift function k(s) for traveling gusts in terms of the unsteady-

1lift function for indicial flap deflection ka(s,g) for the wing with

the given plen form and Mach number; for incompressible two-dimensional
flow this function kg 1s given by equation (A8). Thus, upon substi-
tuting this function Into equation (Al), the following expression is
obtained for traveling gusts which pess over the wing from the leading
edge toward the tralling edge: _.

L ar,, , _ B
o a(s-?\cr)<f>§=cr do (11)

b hd
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where ki o(8) 1s the contimuous part of the indlcisl-1ift function
ky(s), that is, the pert of k;(s) excluding the delta function for

this case. (The notetion in the upper limit of the integral specifies
that the upper limit is the smaller of the two quentities 2 and s/A.)
The functions T, end T,, are (see eq. (A6))

1, = (& - 1)\t - £2 - cos™X(g - 1)
Tio =\12g - 2 + cos™He - 1)

S8imilerly, for gusts overteking the wing (passing over the wing
from the trailing edge toward the leading edge), equations (A2) end (A8)

yield
min(a’l Xs l) -ar
k(s) = j;) %kl,c(s—l')\ld)<—a§—lo>§=2_c -

-4aT
L a(s-lxlo)< d;*)gﬂ_(} ao (13)

Hence, for gusts epproaching the wing or receding from it at a
speed below that of the wing, equations (11) and (12) yileld

(12)

.8/\ D

k(s) = 3; jos kl(s—')\e])\’-z% dsq + ,:Tle \,s(27\ - 8) (s € 20)
, r(lh)

k(s) = % L kl(s-Ksl) 5 flsl dsq (s 2 2N)

J
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and, similarly, for gusts overtaeking the wing, equations (12) and (13)

yield
s/|A| 2 -8
xo) -} [ kl(s-msl)J s ey +
_;L? B2 - &) (s S 2] f (15)
k1 ¢

2 2= 87
k(s) = % j; kl(s-l)\lsl)v—s—lil dsq (s > 2|Al)
In the same manner, expressions for the unsteady-moment function .

cy(s) for traveling gusts cen be obtained from equations (Al) and (A2)

by using the moment function for indicial flep deflection given in
equation (All) and the function Tg defined in equation (49).

The expressions for the 1lift due to penetration of traveling gusts
cannot be evalusted exactly because no explicit expression for ki o(8)

is known. However, the following simple function wes shown in reference 5
to be a good epproximetion to the Wegner function:

k) (8) ~1 - 1?% (16)

With this expression the unsbteady-1ift functions k(s) cen be evalusted
readily. The results are given in table 1 end are plotted in figure 1
for several values of A. (In fig. 1 the abscissa is interrupted at-

8 =5 and different sceles are used in order to exhibit the behavior of
the response functions at both smell and lerge velues of s8.] For A =0
(VS =% m), the functions k(s) given by equations (1%) and (15), respec-
tively, reduce to_the approximate Wegner function given in equation (16);
end for A =1 (Vg = O), the expression for gusts approaching the wing

reduces to an equivalent epproximation to the Kissner function.

The analytic expressions given here for Xk(s) can be compared
directly with those given in reference 3 only for smsll and very large
values of s, In which range the agreement is very good. In the inter-
medlate range of & the numerical results presented in flgure 1 agree
with those estimated In reference 3 to within the width of the lines.
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Therefore, in view of the entirely different nsture of the spproxi-
mations made in the two methods, the excellent sgreement of the results

is gratifying.

An examination of figure 1(a) indicetes that, as the propagation
speed of the gust increases from O to = (A decreases from 1 to 0),
the continuous pert of the lift-response function Xk(s), which represents
the circulatory contribution, increases graduaslly for all finite values
of s from the Kissner function to the Wegner functlon. At the same
time the noncirculatory contribution increesses also and more repidly,
glving rise to a hump in the response function with a maximm at approxi-
mately the value of s which corresponds to the time it tekes the gust
to traverse one-half of the wing chord. This hump, which exists neither
in the Kiissner nor the Wegner function (as usually defined), mey be very
large, much larger then the steady-state value, in fact. As the forward
speed of the gust epproaches infinity, this hump approsches the function

% 8(s), which represents the noncirculstory contribution associated with
the singular part of the Wagner function.

When the gust recedes from the wing at speeds less than that of the
wing (A > 1), both the circulstory end the noncirculstory part of the
response tend to decrease until, when the gust travels almost as fast
as the wing, the response increases very slowly and thus takes a very
long time to attain its steady-stete velue of unity.

The lift-response functions for gusts overtaking the wing, that
is, for Vg < -V and, hence, for negative values of A\, are shown in
figure 1(b). For very lerge gust speeds the response function again
epproaches the Wegner function. For smaller speeds both the circulatory
end the noncirculatory part of the 1ift graduelly decrease, until, when
the gust overtakes the wing with a speed barely higher then that of the
wing, the 1ift increases very slowly toward its steasdy-state value. As
in Ahe case of gusts approaching the wing, the noncirculatory contri-
bution again leads to a hump which may be very large.

The circulatory part of the 1ift tends to be greater for gusts over-
teking the wing then for gusts epproaching the wing or receding from it,
for the same reaeson that tralling-edge flaps are more effective in pro-
ducing 1lift then leading-edge flaps, although the noncirculatory part
is the same (for = given value of |A|). Thus, for a gust overtaking a
wing the 1ift response is larger at all finite values of s +then for a
gust being overteken by the wing at the same relative speed, namely,
|V + Vg| .

The unsteady-moment functions cm(s) which were calculated in a
similer manner are given in teble 2 and are shown in figure 2. As mey be
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seen from equations (Al10) and (All) by the absence of terms proportional
to (k) end kl,c(s) , the moment about the quarter-chord points con-

tains no contributlon due to circulatory effects. Hence, no epproximation
of the type indicated in equation (16) needs to be made for the moment
function. The behavior of the functions cy(s) shown in figure 2 is

thus similar to the variation of the humps in k(s) discussed previously.

As the forwerd propagation speed of the gust approaches infinity,
the moment function approaches the function -x8(s), which indiceates

that the 1lift represented by the contribution % 8(s) to k(s) for that

case acts at the mlidchord. As the forward speed of the gust decreases,
the initisl center of pressure moves forwerd until 1t reaches the quarter-
chord point. of the wing when the forward speed of the gust is zero. As
the gust recedes from the wing at velocitles 0 > V8 > =V, the initial
center-of-pressure locatlon 1s forwerd of the quarter chord, thus
resulting in positive initial pltching moments.

Supersonic Two-Dimensional Flow

For supersonic two-dimensional flow the functions k,(s) and ky(s)

have been calculated in references 6 and 7. The function Xk(s) end

cp(8) can be obtained in the same menner. For this purpose equations (5),
(6), end (7) are convenient, because they serve to identify the actual
boundary-value problem (in the transformed doordinates) with the boundary-
value problem of a three-dimensional wing with supersonlc edges in steady
flow parallel to the t-axis with a Mach number of \J2. The potential

and pressure for this wing are then also the ones for the problem of
interest here.

The fictitious three-dimensional wings are shown in figure 3. The
leeding and trailing edges are indlcated, and the leeding edge also _
includes the part of the t-exis between O ..and c¢. The boundary con-

ditions are that in the shaded region dz =¥ elsevwhere on the wing

@y = 0, end ahead of the wing @ = O. For “these boundary conditions the
pressure coefficient can be obtalned resdily by a superposition of sources
or by conicel-flow methods, and these are given in teble 3. The 1ift and
moment coefficlents as a function of time can be cobtalned from equa-

tion (8), and the 1lift function can be reduced to k(s) by dividing by

H_% _  The results for k(s) end cm(s) are given in tables 4 -

Ve -1

and 5 and are shown for M = 2 in figures 4 and 5 for several values
of Mg. For M; =0 and Mg = @ the function k(s) reduces to the

functions kl(s) end ky(8) given in reference 7, as msy be expected.
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As may be seen from figure U{a), as the forward speed of the gusts
increases, the rate of 1ift growth at small values of s increases and
tends to spproach infinity as the gust speed spproaches infinity. For
low gust speeds the increase is steady, but for high gust speeds
(Mg 21 for M= 2) the 1ift increases to the initial velue of the ky

function and dips down before it Increases agaln toward the steady-state
velue of unity. The large peeks assoclated with the noncirculatory con-
tribution in incompressible (and presumably subsonic) flow are not present
for supersonic flow.

For gusts receding from the wing the gust-response function increases
steadlly, and the rate of increase decreases with gust speed untll, for
gusts receding et almost the speed of the wilng, the functlon increases

very slowly.

Similarly, as may be seen from figure U(b), for gusts overtaking
the wing, the 1ift response incresses linearly (at a rate which increases
with the speed of the gust) until it reaches a value intermediete between
the initial value of the Wegner function and the steady-state value of
unity, and then continmues Ilncreassing at s much lower rate.

S8imiler observetlons mey be made for the moment functlons shown 1n
figure 5.

Delta Wings With Supersonlc Ieading Edges

For delte wings with supersonic leading edges, that 1s, for delta

wings with an aspect ratic A lerger than h/UMa -1l oreslope m
of the leading edge (tengent of the spex half-angle) larger than

1/YM2 - 1, the functions k.(s) end (8) have been given in refer-
1

ences 8 and 9. Agsin, the functions Xx(s) and Cy(s) can be obtained
in a simlilar manner.

The detalled solution of this three-dimensionsl-flow problem is much
more difficult than that of the two-dimensionsl-flow problem discussed
in the preceding section. However, 1f attention 18 confined to the chord-
wise load-distribution function 1(x) end the totel 1ift and pitching
moment, the problem can be reduced to a two-dimensional one similsr to
the problem considered Iin the preceding section. This reduction can be
effected (see ref. 8) by considering the integral of @ over the local

span, that is,
[- -]
o = f ¢ ay'
-0
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for which, in the coordinates x,z,t, the partial differential equation _
is equation (5), with the y derivatives deleted. The loading func- -
tion 1(x) is then given by the equivalent of equation (6), namely,

Mni -
q VM% . -

and the boundary condition is the equivalent of equation (7), namely,
for the fictitious wing surface in transformed coordinates,

o, = im(x-i—Mt) 4

m(xME)
Thus, - -
o, = 0 (x> Mgt)
0, = aWm(x + Mt) (x < Mgt) -
or - =
¢z = 0 (x < c + Mgt) _’:
0, = 2Wm(x + Mt) (x> ¢ + Mgt)
depending on whether Mg is greater than or less than -M. ) o eam

The geometric cheracteristics of the fictitious wing are again . -
those indicated in figure 3 (where ¢ now refers to the root chord) and -
the boundary condition on ¢ is sgein specified on the shaded part of _ o ____:
the wing and is zero elsewhere; but it 1s not constant as it was before.
The solution of the problem cannot, therefore, be obteined readily by i
conical-flow methods; but the source-superposition method can still be o
used conveniently, that i1s, -

) tq)dxy dt . -

o(x,0,t) = ":]E ff z (*L,t1)dx) dty R
Mach \J(t - 81)2 - (x - :)° :

forecone - ~

The resulting expressions for the loeding function-are given in L
table 3, and the corresponding velues of k(s) and Cp(s) are given in .

LIN

L
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tebles 4 end 5 and are shown in figures 6 end 7 for M = 2 and several
velues of Mg. Again, the function k(s) reduces to the known func-
tions k;i(s) end kp(s) (see ref. 9, for instance) for Mg = and

= 0, respectively. The behavior of these functions mey be seen to
be similar to that of the functions for supersonic two-dimensionsl flow.
(See figs. 4 and 5.)

Rectanguler Wings in Supersonic Flow

The pressure dlstribution In the reglion of e rectangular wing shead
of the Mach cones emasneting from the wing tips 1s ldentlcal to that of
a two-dimensional wing. Although the pressure distributlion within the
Mech cones cennot be calculated readily, the chordwlse loading and the
total 11ft and moment contributed by these reglons can be determined
readily by e technique simller to that used in the preceding section
provided the Mach cone emanating from one wing tip does not cross the

opposite side edge, that is, provided A 1is larger than 1/\M2 - 1.
For such wings which will be referred to as wilde rectangular wings, the
functions kj;(s) eand ky(s) have been given in reference 10 end
elsewhere.

In reference 10 the unsteady-1ift coefficlent for a wilde rectangular
wing with a downwash distribution of the form

Bpr(x',¥y',0,8') = VE(x')/(t'-1))
(wvhere 7 represents the unit jump function end t) mey depend on x')
1s expressed as
Cp(t') = Cp,olt') - ac(t*) (17)

where CL,O(t') is the indiclal-1lift coefficlent for a two-dimensionsal
wing with the same downwash condition.

The correction term which mist be added to the two-dimensional wvalue

can be expressed as en integral of a chordwise-loading function (x',t')
and is, for a wing of unit chord, -

] — ll- l 1 1 T
poy(e1) = gt [ e (182)

An anslogous correction for the moment coefficlent 1s
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where

Kop(t') b fl (x',8")x" ax (18b)
1) 2 ———— y xl, )x! 1
A - 1) Yo
, N o x! xl._-
7(x',%") L alE’T'—iC')_)] £(g)ag (19)
vhere, in turn, the indicial-response function e.l(-r) i1s given Dby
E.l('l') a 0 (T < 0)
=1 (0 St$ ml)
= % (ml § T § nl)
=0 ('r 2 nl)
M-1
n = M :/; 1
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Now, for a wide rectangular wing penetrating e traveling sharp-
edged gust of intensity W and speed Vg,

2(e) =¥ (20)
tot) = g (Mg > ) (21a)
to(t) = ==& < M 21b
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where
M, =M+ Mg
Substitution of equations (20) and (2la) into equation (19) ylelds
x|

7(x',t) = LI aq x -t dg
v ~/; ﬁ& (Mét - g)

or, changing the varisble of integration to

_Moox' - ¢
T=_L%Met-§
gives
x'
ey oo Mo W _aln)
7(x ,t)=vw%(x - Mgt) J; (—_-%e;-)-ﬁh (Mg 2 ¥) (22)
and, similarly,
_Mex
ey = e M) _ealn) i
7(x',8) = 5 5 (x' -1 Met) fo (_%{e)adT (g < M) (23)

The geometric characteristics of this problem ere indicated in
figure 8. The integrations required in equations (22) and (23) teke
place along lines Mt = Constent from & = x' (vwhere T =10) to E=0

x! Mex' >
= = = whether -M|. T
where T e or T M(Mét 1’ depending on Mg < M) e

resulting expressions for 7 are glven In table 6. These expressions
have been integrated to obtain the correctlion for the 1lift and moment
coefficlents. (See eqs. (18).) The results are given in tebles L4 and 5.
The unsteady-1lift function k(s), which is obtained by normalizing the
corrected value of the two-dimensional unsteady-1lift function (see
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eq. (17)), is shown in figures 9 to 12 for M = 2 and sevéral values
of Mg end A. Similarly, the unsteedy-moment coefficients are given _

in figures 13 to 16 for several velues of Mg eand A. Again, the

unsteady-11ft function k(s) reduces to the known functions ki(s) and
ko(s) for this cese, which are given in reference 10. _

The behavior of the lift-response and moment-response functions is
similer to that for supersonic two-dimensional flow, except for the -
slight differences assoclated with the fact ‘that for finite aspect ratios
the initial velue of the k; function cen be greater than the steady-
state value.

Very Narrow Deltas Wings

For very narrow delte wings and bodles, derivatives with respect to
x' or x tend to be small compared with the others in the equations of
motion (eqs. (1) and (5)). For incompressible flow, equation (1) there-
fore becomes the two-dimensionel Ieplace equetion in the Y'Z'-plane and
can be solved reedily for both steady and unsteady boundery conditions.
If only the chordwilse-loading function and the total 1ift and moment
are of Interest, the solution of the boundery-value problem can be
avoided, because the chordwlse loading can be cobtained directly from
epparent-mase considerations. This approach_was used in reference.ll °~
to calculate the functions k;(s) and kx(s).

For compressible flow, equation (5) becomes the two-dimensional-
wave equation with boundary conditions in the case of interest here which
cen be construed as pertaining to & three-dimensional wing in steady
supersonic flow, as was done for the functions k;(s) and ko(s) in
reference 12.

Incompressible flow.~ The expression for the chordwise loading given
in. reference 11 is

W) = (éw £y gx_> o 2(x') ﬁ(x',t'ﬂ

where b(x)/2 is, for a delte wing, equal to mx', m being the tangent
of the semispex esngle of the wing. For a wing flying at speed V and .
penetrating a traveling sharp-edged gust approaching from the leading
edge with speed Vg, the effective sinking speed h 1is glven by

B(xr,t0) = W_ZQ: ;;_') (24)

-,
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where Vo =V + V, and | designates the unlt jump function, as
before. The total indiciel 1iPt end moment about the two-thirds root-
chord point of the wing are thus

a2
k(s) = u—?\gﬁ. -7 (s8] + 7 (s-2)

Cu(s) | g3 g2
BT (3-2) -2 (s-20)
(=) | ok 6M3 ‘Z
When A 1is zero or infinite, the followlng two 1limiting cases are
obtalned:

Ke)|, =% (s€2)

1 (s > 2)

5(8)] pngy = 2 8(2) +7 (2)

where O&(s) 1s the Dirac delte function. These results ere identical
with the functions kl(s) and ko(s) presented in reference 11 for
this case.
Similarly, for gusts overteking the wing,
h(x',t') =w ] (t' +E =X x')
Ve

Thus, the 1ift and moment functions become
S -
k(s) N ( 2|7\|) EL -7 (s 2|7\|):| +1

gf:%=% <1+%) [ - <1+—;\—)(3 -sz:l-_Z (s-2|7xl):\
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vhere gﬂ%i% 1s again referred to the two-thirds root-chord point. For
Loo

the special cese for which V_, i1s infinite, this function xk(s) reduces

to the function k;(s) given in reference 11. When Vg = -V (the case

of a gust traveling just behind the trailing edge), k(s) = 0; however,

if Vg = «1lim (Vo + e) (the cese of a gust traveling et the same velocity
€20

as the airfoll and with its leading edge Just ahead of the trailing edge

of the wing), then

k(s) = 7(s) _

The functions k(s) and Cp(s) for gusts approaching the wing
from either direction are shown in figures 17 end 18 for several values
of A.

The behavior of the response functions 1s similer to that of the
functions for incompressible two-dimensional flow. Again, large peeks
associlated with the noncirculatory contribution to the 1lift exist at
low values of 8 for gusts approaching the -wing or overtaking the wing;
and, asgaln, the value of the response function et all finite values of .
s <tends to be much lerger for gusts overteking the wing than for gusts
approaching 1t or receding from it at the same relative speed.

Compressible flow.- For compressible flow the lift and moment
responses cen be obtalned by the method used in reference 12. The
resulting expressions are given in taebles 7 and 8. They involve & func-
tion £(7) which is defined and tebulated in reference 8. Inasmuch ss
no simple explicit expressions for f£(7n) are available, the integrations
required to obtain the functions of interest here would have to be per- -
formed numerically. No such calculations have been mede. However, the
unsteedy-1ift functions given here can be shown to reduce to the func-
tions ky(s) and . k,(s) given in reference 12.

NORMAL~ACCELERATION RESPONSE COF AN AIRPLANE

TO TRAVELING GUSTS

The purpose of this sectlon is to indicate the effect that changes
in the response function which result from changes in the gust speed

may have on the acceleration response of an airplasne to sharp-edged gusts. ;m

For this purpose the airplane will be assuméd to be free to move in only
one degree of freedom, verticeal itranslation.”’ Ignoring the pitching
degree of freedom implies that not only pitching motions and their effect
on the normal acceleration but also the unsteady moment which results
fror the fact: that the gust strikes the wing and tall at different

T 1

™
Y

: IHiJI..wn

I
1h Lll 1
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instents of time are disregerded. Nonetheless, this assumption is made-
very often in gust-load studies, particularly in primerily qualitative
studies, end will be used here for that purpose. For airplanes with &
high mass ratio, with a relatively high pltching moment of inertie, or
with a well-demped short-period mode, or for literally sharp-edged gusts
(such as those represented by a blest), this approach is even capable of
yielding useful quantitative information.

In terms of the unsteady-1ift functions k(s) eand k,(s) due to

traveling-gust penetration end plunging, respectively, the equation of
motion for this case can be written in dimensionless form as

ar B8
K(s) = 42 = x(s) - 3 j; ki (s-81)K(s1 )asy (25)

where K(s) is an elleviation factor referred to the reference "static"
acceleration

L oy

&
<=

which is the initial scceleration response if unsteady-11ft effects are
ignored, and p 1s a mass parameter deflned by

Lo lme

- pScCLa’

An examination of equation (25) indicates that for large values of
the mess permeter the alleviation factor K 1is substantially equal to
the lift-response function k(s). Thus, any changes in k(s) are then
directly reflected in similer changes in the normal-accelerstion response.

For smeller values of the mass parameter the Integral equetion hes
to be solved for KX(s) by using operational methods (if k(e) and
ky(s) are, or can approximately be, expressed by simple functions), by
iteration, or by numerical methods. Numericel celculations have been
made for p = 50 and 200 by using the two-dimensionsl unsteady-l1ift
functions for incompressible and supersonic flow. The value of u = 50
represents a transport airplene flying at low or moderately high alti-
tudes; the other value represents a fighter or bomber airplane at low
altitudes, or the transport alrplane at high altitudes. The results are
shown in figures 19 to 22.
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In using response functions for two-dimensional flow to represent .. - . __
those for an actual tapered wing, basically two approximations are msade, —
inasmuch as both the steady-state 1ift and the manner in which it is =
approached as & function of time differ for a wing of finite and infinite —
span. The differences in steady-state values can be removed by using the
unsteady-11ft functions k(s) which are normalized with the steady-state
11ft; the differences in the menner in which this value 1s approached can
be minimized by referring s 1o a more representative chord than the
root chord, such as the mean serodynsmic chord. If s 1is redefined in
this manner for the purpose of using the two-dimensionsl response func-
tlion to better adventage, the mess parsmeter p must elso be referred -
to that chord rather than to c¢. The values of 4 and 8 wused in
figures 19 to 22 should, therefore, be considered to be defined in this
modified manner.

. Ii'i.H!H WLk |..'iii i.

Comparison of-the results presented in these figures with those foif
the unsteady-11ift functions themselves indicates that, as expected, the
acceleration response follows the 1ift response not only for large values
of p (around 200) but also during the first few instents of travel (in
which time the peek in the 1l1ft response due, to noncirculatory f£low
effects occurs in subsonic flow) for smaller mass ratios (around 50); T
however, thereafter the acceleration response does depend on the mass
parameter. These statements are true for gusts both approaching the _
wing and overtaking it. For supersonic speeds calculations have been -
mede only for a mess ratico u of 50, because even for this vaelue the
acceleration responses follow substentlially the lift-response character-
istice; they can be expected to do so to an even greater extent for
larger vaelues of the mass ratio. The conclusion can, therefore, be drawn
from these curves that the acceleration response depends to a large
extent on the magnitude end direction of the gust speed.

|1i.i||.i|.. b

L

vobnl mirnl
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In the preceding paragrephs only sharp-edged gusts have been con-
sidered. For traveling gusts, the intensity of which is a function of
the dlstance behind the wave front 4, the acceleration response can be .
determined by superposition from the sharp—edged gust response obtained =~ . |
by solving equation (25). Inasmuch as =

b

g = %8 PR
2\

the gust intensity can also be expressed as a function of s, namely,

W(s). In terms of this function and the acceleration-response function .
K(s), the normal scceleration for a time-dependent gust can be writtem . ... ...
as -

L
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SC
7(s) -%l}(o)x(s) ¥ fos K(s-81) Z‘:ls ) dsy (26)

The convolution process Indicated in this equation mey tend to
obscure some of the minor effects resulting from changes in gust speed,
but the major concluslons reached concerning the effect of such changes
on the acceleration response to sharp-edged gusts are likely to be valild
for the acceleration response to other types of gusts as well.

RELATTON BETWEEN BILAST WAVES AND TRAVELING GUSTS

When a blast wave strikes a stationary object, the instantanecus
pressures on the surface of the obJect are proportionsl to the peek over-
pressure of the blast, the constant of proportionslity belng a reflec-
tion factor which depends on the geometric cherascteristics of the object
and, for strong shocks, on the shock strength as well. (See ref. 13.)
This overpressure is due not only to the fact that the objJect is initially
exposed to the shock but also to the fact that it arrests the propaga-
tion of that shock or deflects it. The manner in which the problem of
calculating this overpressure (the diffraction problem) can be solved
is indicated in reference 1%, where the results of several such celcu-
lations sre also given.

When the object is & wing flying initially through still air, its ~
response to the overpreessure of the shock is similer, but in addition to
this effect it also responds to the velocity behind the shock. The
effects of overpressure and veloclty overlep and cannot be divorced from
each other readily. For instance, for & weak shock, which propagates
substantially at the speed of sound, the overpressure P, end the
veloclty W, eare related by the limiting form, for small overpressures,
of the Rankine-Hugoniot equation, namely,

Pp = peWyp

If this shock strikes a plate parellel to its front, the initisl pres-
sure on its exposed surface is 2p,, whether the plate is stationary

or moving parallel to the shock front, and the initisl pressure coeffi-
clent for the surface is
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However, this initiel pressure coefflcient is also preclsely the one =
assoclated with instantaneous entry into a vertical gust of intensity *
Wp; thus, conslderation of either the overpressure or veloclty ylelds -

e result for the initial response which includes the effects of the other
in this case. On the other hand, after some time has elapsed, the over-
pressure equalizes around the plate and, hence, produces no pressure
difference directly, although in subsonic flow it can stlll influence

the 1lift through the vorticilty shed while it was acting; thus, except

for this induction effect in subsonic flow, the pressure difference is
then due to the velocity effect alone.

nidd .

In this section only the effects of the chenge 1n relative velocity
occasioned by entry 1into a week blast are considered. In view of the
preceding argument, these effects include at least some of the effects
of the overpressure assoclated wlth the glven blast. Inasmuch as atten- T
tion 1s confined to weak blasts, the effects of change in temperature
(and hence speed of sound) and density across the blast wave, which pro-
duce only second-order effects on the 1ift of the wing, will be disregarded.

The relation between a blast wave and a traveling gust is indiceted . - .2
in the following sketches: “ Cee
Blast wave = Travelling gust ; {

The equivalent vertical gust intensity is determined by a consider-
ation of the conditions prior to and subsequent to gust and blast entry.
Thus,

W =W, sin 8
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The other (horizontel) component of the blast velocity is parallel to
the chord and is equlvalent to a horizontal gust which, within the scope
of e linearized treatment, produces the same 1ift as a verticel gust of
intensity equal to 2uy times the intensity of the horizontal gust.

Thus, 1f this effect 1s teken into account,

W = Wp(sin 8 + 204 cos 6) (27)

For blasts striking from almost stralght shead or behind, the second term
mey be more important than the first.

The equivalent speed of the travellng gust 1s determined by a con-
slderation of the tlime required for the gust and the blest wave to trav-
erse a glven horlzontel distance. Thus, the time required for the blast
wave to pass over a gilven distance Ax salong the £light peth is
AXx cos G/Vb, and the time for the gust is Ax/Vs. Therefore, the equiva-

lent gust speed is

-\
8 cos ©
’ (28)
~ 8
g cos O
J

inasmich as for a week hlast wave, Vy 1s epproximetely the speed of
sound a. The equivalent value of Vs assoclated with a blest must,
therefore, always be supersonic.

With the equivalent relstions given by equations (27) and (28), the
gust-response functions for supersonic values of Vs end accelerstion-

response calculations presented here can thus be used for the blast-
penetration problem. The varlation of the blest velocity W, behind

the blast front can be taken into account by expressing this variation
as a function of 8 by usling the relation

V-
- c8 i)
d——E(cos 0 + V)

and then by using equation (26) to caelculate the acceleration response.
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DISCUSSION

The 1ift and moment responses have been calculated herein for two-
dimensionel wings In incompressible end supersonic flow, for wide delta
and rectangular wings in supersonic .flow, and for very nsrrow delta
wings. The reason for selecting these cases wes that for them the func-~
tions of interest could be readlly calculated. For three-dimensional .
Incompressible flow and for two-dimensionel compressible flow the func-
tions k; and k, have been calculated in previous investigations, but
the methods used do not lend themselves to the calculation of the more.
general response functions of interest here; also no simple methods are
avellable for calculating the desired responses of wings with subsonic .
leading edges 1n supersonic flow. -.

The results of calculatlons for very narrow delta wings have been
included despite the fect that the results of linear theory for these
wings ere of limited practlcal utility, inasmich es for even relatively
low angles of attack the weke of these wings tends to curl up and intro-
duce deviations from linearity in force and moment responses. The
reasons for including these results 1s that they are obtained very easily
for incompressible flow and serve as the only indication of aspect-ratio
effects 1n subsonlc flow avelleble at present. In other words, their
significance stems primerily from the fact that these wings serve as a ..
theoretical limiting case. However, no numérical calculetions have beén
made for these wings in compressible flow because such calculstions
would have regulred more effort than the regults are considered to
warrant. :

In this peper only entry into traveling gusts and blests is con-
sidered. However, the results elso epply to the problem of exit from
traveling gusts and blests, lnasmuch es exif from a gust of given
intensity can be considered to represent an entry into a gust of equal
and opposite intensity; thus, this problem need not be treated explicitly,
and ell statements made in this paper concerning responses due to entry
into gusts and blasts are equally valilid for exlt from gusts and blasts. .

A full discussion of the implicetions and limitetions of linesar
theory are beyond the scope of this paper. Tt should be pointed out thet,
in order for the results of this theory to be valid, all disturbences
must be small; therefore, the gust intensity and the magnitude of the
resulting motion mist not be too large. Foi most problems other than

those related to.blast loads, these conditions ere likely to be satisfied, -

except possibly for very narrow delte wings. On the other hend, for
blests they may not be satisfled unless the alrplane is fairly far away
from the center of the blast. The limiting distance depends on the magni-
tude of the blast; the orientation relative to the airplane (blasts fram
almost directly ahead of or behind the girplane result in low induced

il .'J.L.Illl .
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engles of attack); the speed of the alrplane (the higher the speed the
smaller the angle-of-sttack change is caused by a gilven blast veloclty;
but for high subsonic, transonic, and high supersonic speeds, only small
angles of atteck cen generally be tolerated within linesar theory); and
the plen form (the aerodynamic forces on low-aspect-ratio wings tend to
be lineer only in a small engle-of-attack renge). Nonetheless, despite
these limitetions end despite the possible presence of the aforementioned
pressure effects which have been ignored herein, the results presented
herein which pertain to supersonic speeds of gust propagstion should
furnish a first step in the theoretical analysis of the blast-load
problem.

CONCLUDING REMARKS

The 1ift and moment responses to penetration of sherp-edged traveling
gusts have been calculated for wings in incompressible and supersonic
two-dimensional flow, for wide delta and rectenguler wings in supersonic
flow, and for very nsrrow delte wings. By using the two-dimensionsal
indicial-1ift functions, some calculstions of normel-acceleration response
have been made for two mess ratios.

The results of these calculations indlicete that the propagation
speed of the gusts hes a large effect on the lift- and moment-response
functions. For incompressible flow (and presumably for compressible
subsonic flow as well), peeks exist in the early portion of the 1lift
response which may be much lerger then the steady-stete value. Some
pesks glso occur in the lift-response functions for supersonic speeds
but are much less pronounced and exceed the steady-state value 1n only
a few Instances.

The normel-acceleration responses tend to follow the lift response
very closely in the first few instants of penetratlon provided the mess
of the airplene is not impracticelly smell; thus, the large peaks which
exlst in the 1ift response at subsonic speeds ere duplicated in the
scceleration response. After the first few lnstants the acceleratlion
response depends to a relatively larger extent on the mass of the alr-
plsne.

The relation between gusts traveling at supersonic speeds and blast
waves hes been Indicated, and the manner in which the calculated 1i1ft and

moment responses can be used in a linearized approach to the blast-load
problem has been ocutlined.

Langley Aeronautical Iaboratory,
Nationel Advisory Committee for Aeronsutics,
langley Field, Va., Jamary 16, 1957.



30 NACA TN %956 N
APPENDIX -

REIATION BETWEEN UNSTEADY-LIFT FUNCTIONS FOR GUST PENETRATION o=

AND FOR INDICIAL FIAP DEFLECTION -

As polnted out in the text of thls peper, the unsteedy-1ift or . . _'
unsteady-mament functions for gust penetratlion cennot, in general, be =
obtained directly from the lift and moment functions for indicial angle- _ .
of -attack change. However, they cen be obtalned from the unsteedy-11ft "
and unsteady-moment functions for indliclael flap deflection. Thils approach & .  ___
is similar to the one used by KUssner in reference 1 for stetlonary gusts.

However, in reference 1 considerstion is glven initially to sinusoidal
gusts and flap deflections; whereas here the desired results are estab~
lished by working with Indiclal responses dlrectly.

As may be seen from equation (3), the boundary condition for gust
penetration 1s, at eny instent +t', the seme as that for a wing with a
leading-edge flap which extends to the point x' = (V + Vg)t'. Conse~

quently, 1f the 1ift or moment due to indicial flep deflection is known,
the 1ift due to gust penetration can be obteluned by superposition. Thus, _ -
if the normalized unsteady-1lift functlion for indicial deflection of a .

tra.iiing—ed.ge flep extending resrwerd from x' = ¢ % 1s desligneated by
ka(s,g), the unsteady-l1ft function for gust penetretion cen be obtained

by considering segments of the wing to deflect indicially in a progres-
slve fashlion; thus,

T T

K(e) ~ [ig(s,0) - kp(s,08)] + [kg(a-t0,A8) - ky(s-09,208)] + . . .

~ oAt 'd% ks (8,0) + kg(5-08,A8) + ky(s-208,208) + . . ]
with — e - . — ) ) _ -
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Hence, in the limit as At —0,

min (2,
k(s) = :/; n( %) [dig ks(s-m,g)] t=g do (A1)

This reletion perteins to stationary gusts (A = 1) es well as for
all gusts traversing the wing from the leading edge to the tralling edge
(A > -1). For gusts traversing the wing from the tralling edge to the
leading edge (A < -1), the following relstion may be obtained in the
same manner:

min (2,8
k(s) =J:) ( TT\T) [d% ks(s-lkl 0‘,2-5)] £=0 do (A2)

Equetions (Al) and (A2) represent the desired relations between the
unsteedy-1ift functlons for gust penetretion and indiclal flep deflectlon.
Identical relations exist between the unsteady-mament functlons.

The unstesdy 1ift (or moment) due to en indiciel flap deflecting,
as used In the preceding relations, is the 1ift on e wing which hes a
flep deflected by & unit engle, 18 1nlitlally at rest, 1s sccelerated
instentaneously to speed V at time +' = O, and then continues to fly
et thet speed with zero angle of attack. This 1ift 1Is releted to but
not necessarily identical to the 1ift on a wing initially flying et
speed V and experiencing an ebrupt flap deflection at time +' =0,
because such a deflection involves translent effects, namely, those due
to an impulsive rate of rotation (a condition which implies an impulsive
vertical velocity proportional to the distence from the axls of rotation),
which are gspuriocus for the present purpose.

Similarly, the 1lift for a flep which 1s sbruptly glven a constent
rete of vertical displecement at time +' = 0 contains other effects
vhich ere spuricus for the present purpose, namely, those due to the
chordwlse discontinulty in displacement at the leading edge of the flep
which must exist in this case.

The unsteady-11ft (or moment) functions for sbrupt flep displece-
ments cen be obtalned from those due to oscillating displacements, which
ere often calculated for use in flutter studies, by means of the relation
(see ref. 5)

0 ~1ks
ke, = [ BT 7 o (23)
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where Fy 18 the reel part of the normslized unsteady-11ft fimction for
sinusoildal flap displacements, end k 1s a reduced frequency equal to

%. A similar relation exists between the moments.

The following two exemples indicate the menner in which the required
functions mey be obtalned.

For supersonlic two~dimensional flow, a trelling-edge flep of chord
cp experiences the same 1ift and moment es 1f it were & wing with chord

¢r; and the rest of the wing contributes nothing to the 1ift end moment.
Hence,

ky(s,8) = £ k1(3°; )

where kl(s) represents the unsteady-lift function for indicial angle-
c
of -attack change, end lnesmuch as § = 2(1 - —cf;),

(s, 8) = 5(2 - ¢ )k1(2 g) (k)

Similerly, if Op,1(s) is the unsteady-moment function for indicial ..
angle-of -attack change end.the moments are ipken about the leading edge,

Cag(858) =—(2- &) %o, < > (2 )cLGk;L( > (45)

where Cr_, the lift-curve slope, 1s the value with which kj(s) end
k(s) sare normalized. :

For Iincompressible two-dimensionel flow the normallzed complex 1ift

function for a trailing-edge flap undergoing oscillatory displecements of
amplitude Ho% with frequency ® can be obtained fram those of the terms

of equation (22) of reference 15 which contein the product B1 = H. The
following result 18 obtained in this menmer:

Cr, = -l:aveg - .t-.é %% - ( ) \—rz] 2nc[T21 H + T:E-O ¢ ‘Efl

where C 18 a function of the reduced frequency k which 1s defined iq
reference 15, and generally 1s known as the Theodorsen function, end where

Il

—— — rre—
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the functions T, Typ, and Tp) ere defined in reference 15 in terms:
of a perameter c¢ which in the notation of the present peper is §& - 1;

thus,
T, = (& - 1)425 - &2 - cos™l(¢ - 1)

Tyo = y2& - £2 + cos™1(g - 1)

(a6)

In the expression for Cp the terms In the flrst bracket are asso-

clated with noncirculatory flow, the others with circulatory flow. In
each bracket the first term 1s due to the vertical displacement of the
flep; therefore, 1t 1s not pertinent to the present purpose. (Only the
contribution of the potential @ glven in eg. (7) of ref. 15 is pertinent

here; the potential @y glven by eq. (6) of ref. 15 is not pertinent.)
The desired normalized steady-11ft function is, therefore, for unlt down~

wash, that 1s, for 32% = -1, where

11Ty,
Colk,8) = - T2 + o) 110 (a7)
Thus, equetion (A3) yilelds
k8, 8) = L &y o(s) - 2k 8(s) (8)

where &(s) 18 the unit impulse (Dirasc delte) function end kl’ c(s) is

the contlinuous pert of the indiciel-lift-response functliom, which is the
part obtalned directly fram the circulstory part of the 11ft due to simus-
oldel verticael oscillations, namely, C(k), by using equation (A3).

Similerly, the moment ebout the quarter-chord polnt can be obteined
from equation (23) of reference 15 by setting a = - % end retaining only
the terms contalning B1; therefore,

F 2
-t 1l

This moment 18 due entirely to potentlal effects. Agaln, the first term
and part of the second are due to the chordwlse discontinulty end are
spurious. The other two terms cen be expressed In terms of the functions
B, eand Ty used for the 11ft end & function Tg defined by
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Tg = ~ %(25, - 52)5/2 - (& - 1), (89)

Thus, egain for g',% = =], this moment function beccmes

Calk,8) = = 5(m, + Ty) + %E‘e t (5 - %‘)Th] ,(“D)

Hence, by using equation (A3), the following expression is obtelned for

cma(s: £):
Cma(s,g) = - %(Ij_l_ + Tlo)_[(s) +-% EEB + (g - L 'Ih:l 8(s) (A11)

The menner in which these functions can be used to calculate the
1ift and moment responses to traveling gusts by meens of equations (Al)
end (A2) is 1lllustreted in the text of this paper for incampressible

two~dimensional flow. -

L

1

et |
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PABIX 1.~ URSTEADY-LIVT FUNCEION k(s) FOR INCOMPHESATRIX TWO-DIMENEIOMAL FLOW

Gust condition

Bngs of 8 far -

o<n4g 2l
(n)

8% 2]

B+ Qoort et 1o iian ) -

I s m_ll(ﬂ-l)+h-().-l)

2
DYlzn -4 -l W

v g )

@Qust overtaking wing (A < 0)

b P2 L2 Vo

L1 s(@ + a) + 5 + 8)
& faptelom n

o6 - B)

"In tha last tarw the function coca”l 1s repleced by cosh™) when s § 2|A| - M.

TABIE 2.- URVFEADY-MOMENY FONCTICH Cy(s) FOR INCOMPHEBHIRIE TWO-DIMENETCNAL FLOW

[Moment: is taken about quartar-ohord podnt]

Guast condition

Rangs of 8 fTor -

o< s 2l s % 2al
Oust approaching wing or rooadlng
from ving at spesds lsas than - - J - 0
that of wing (A > 0) E,J(l N va(@ - )

Gust overtaking wing (A < 0)

-ﬂ-ﬂﬁhl(a + l)Vllﬂ +
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TARIE 3.- PEESSURE CORFFICIERT Cy TFOR S0FEREONIC TWO-DIMERSIONAL FLOW ARD IOADING
CORFFICTENT 1/q FOR INIPA WINGH WITH SUPERSONIC IEADING EDGES

(l)mwimmsmmrmmguw
less than thet of wing (Mg > -M)

Begion in x,t plaps for -
GoefHlatamt ::S: xmtjXxmt; xme =N x:--;:;
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.%%+Jﬁ:) (x)!st] -u<n=<-1)
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TABIE J.~ PRESSURK CORSFICIENY C, XNOR SUPERSONIC TWO-DIMEMSTONAL FIOW AMD LOADYIHG
CORFYF IOTENT 1/q FOR DEITA WINGS WITH AUPERACNIC IEATONG EDOES - Cancluded

(b) Gusts overtaking wing (Mg < -M)

Reglon in x,% pinoe botween tha linea for -
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TABLE b.- UNSFRADY-LIFY FONCTION kis) FCR SOPERSONIO FLON
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AR k.-

EDPLY-LTPF YOROFIN  k(n)

(b) Guses cvertaking ving (Hy < -H)
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IARLE 5.~ UNFIELN FISCHING WOHERT ASONT LEADCED BDOK FOR STPERIIC FLOW
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TAELE 6.- DIMENSIONLESS PRESSURE 7y POR WIDE RECTANGULAR WINGS
IN SUPERSONIC FLOW(®)

(a) Gusts approaching wing or reced:l.ngrmmgn.t speeds
below that of wing (Mg > -M)
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TABIE T.- UNSTEADY-LIFT FUNCTION k(s) FOR A NARROW-DELTA WING IN COMPRESSIBIE FIOW

(a) Gusts epproaching wing or receding fram wing at speads less than that of wing
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TABLE B.- UNSTEADY PTTCHING MOMENT C, ABOUT THE LEADING EDGE FOR A RARROW DELTA WING IN COMPRESSIBIE FLOW

{a) Gusts approaching wing or recsding from wing st spesds less than that of wing

Range of 8 for -
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TABLA 8.- UNBTEADY PTICHING MOMENT C, ABOUT THE LEATING EDGE FOB A NAEROW
TETTA WING IN COMPRESHTBIN FLOW - Conolnded
(b) Qusts overtaking wing
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